LOGIN
|
REGISTER
Wednesday, January 15, 2025
Home
Summaries
Country Summary
Site of Action Summary
Site of Action Table
ALS Mutation Database
Graphs
Chronological Increase in USA
Saving Graphs for PowerPoint
Multiple Resistance within Populations
Weeds Resistant to Many SOA's
Global Maps
Chronological Increase
Resistance by Site of Action
Graph Data for Resistance by SOA
Resistance by SOA listing species
Resistance by SOA and Crop
Resistance by Weed Family
Weed Families by # SOA
Top 15 Weed Species by # SOA
Lifecycle Duration for Resistant Weeds vs Weeds in General
Top 15 Herbicides to Select Resistance
ALS inhibitor mutations
ALS inhibitor Mutations - Residue #
#Herbicides for each of the Top 15 SOA's
Recent Additions
Select Multiple Resistance by Country
Resistant Weeds
By Species
By Crop
By Country
By Herbicide Site of Action
By Individual Herbicide
Add New Case
Add New Case of Resistance
Criterion for Confirmation
Herbicides
Herbicide Classification System
Herbicides by Site of Action
Herbicide Poster
Researchers
Login
Log Out
Edit Your Contact Details
Find Researchers
Register as Researcher
Email me my Password
Change my Password
Literature
Search Reference Database
Add a Document
Add a Reference
E-Books
Herbicide Resistant Phalaris minor in Wheat - India
Management of Resistant Weeds in Rice
Prevención y manejo de malezas resistentes a herbicidas en arroz
Help
About US
FAQ
FAQ
Login
FAQ
About Us
Cite this Site
Add New Case
Add Documents
Summaries
US State Map
European Map
Recent Cases
Countries
Sites of Action
All Species by SOA Table
Herbicides
Glyphosate Resistant Weeds
ALS Mutation Database
Sequence Database
Graphs
Global Maps
Herbicide Poster
Herbicide Classification System
Resistant Weeds
By Site of Action
By Crop
By Species
By Country
By Individual Herbicide
Membership
Register
Retrieve Your Password
Edit Your Contact Details
Change Your Password
Contacts
Researchers
Contact Us
HAIRY BEGGARTICKS
(
Bidens pilosa
)
with
GROUP G/9 resistance: (INHIBITION OF ENOLPYRUVYL SHIKIMATE PHOSPHATE SYNTHASE )
Inhibition of EPSP synthase
MUTATION: THREONINE 102 to ISOLEUCINE
Hairy Beggarticks
(
Bidens pilosa
) is a dicot plant in the asteraceae family. A single amino acid substitution from Threonine 102 to Isoleucine has led to resistance to Inhibition of Enolpyruvyl Shikimate Phosphate Synthase as indicated in the table below.
Hairy Beggarticks
Chemical Family
Example Herbicide
Resistance Level
Glycines
glyphosate
Resistant > 10 fold
REFERENCES
Alcántara-de la Cruz, R., Fernández-Moreno, P.T., Ozuna, C.V., Rojano-Delgado, A.M., Cruz-Hipolito, H.E., Domínguez-Valenzuela, J.A., Barro, F. and De Prado, R.
.
2016
.
arget and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (
Bidens pilosa
L.) populations from Mexico
.
Frontiers in Plant Science
7
:
1492 -
.
In 2014 hairy beggarticks (
Bidens pilosa
L.) has been identified as being glyphosate-resistant in citrus orchards from Mexico. The target and non-target site mechanisms involved in the response to glyphosate of two resistant populations (R1 and R2) and one susceptible (S) were studied. Experiments of dose-response, shikimic acid accumulation, uptake-translocation, enzyme activity and 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene sequencing were carried out in each population. The R1 and R2 populations were 20.4 and 2.8-fold less glyphosate sensitive, respectively, than the S population. The resistant populations showed a lesser shikimic acid accumulation than the S population. In the latter one, 24.9% of 14C-glyphosate was translocated to the roots at 96 h after treatment; in the R1 and R2 populations only 12.9 and 15.5%, respectively, was translocated. Qualitative results confirmed the reduced 14C-glyphosate translocation in the resistant populations. The EPSPS enzyme activity of the S population was 128.4 and 8.5-fold higher than the R1 and R2 populations of glyphosate-treated plants, respectively. A single (Pro-106-Ser), and a double (Thr-102-Ile followed by Pro-106-Ser) mutations were identified in the EPSPS2 gene conferred high resistance in R1 population. Target-site mutations associated with a reduced translocation were responsible for the higher glyphosate resistance in the R1 population. The low-intermediate resistance of the R2 population was mediated by reduced translocation. This is the first glyphosate resistance case confirmed in hairy beggarticks in the world.
.
This case was entered by Todd Gaines Email:
todd.gaines@colostate.edu
PERMISSION MUST BE OBTAINED FIRST if you intend to base a significant portion of a scientific paper on data derived from this site.
Cite this site as:
Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet.
Wednesday, January 15, 2025
. Available
www.weedscience.org
Copyright © 1993-
2025
WeedScience.org All rights reserved. Fair use of this material is encouraged. Proper citation is requested.
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##